79 research outputs found

    About the posterior distribution in hidden Markov models with unknown number of states

    Full text link
    We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal densities, that is for the density of a fixed number of consecutive observations. Using conditions on the prior, we are then able to define a consistent Bayesian estimator of the number of hidden states. It is known that the likelihood ratio test statistic for overfitted HMMs has a nonstandard behaviour and is unbounded. Our conditions on the prior may be seen as a way to penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult task than inference of marginal densities, we still provide a precise description of the situation when the observations are i.i.d. and we allow for 22 possible hidden states.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ550 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Adaptive estimation of High-Dimensional Signal-to-Noise Ratios

    Full text link
    We consider the equivalent problems of estimating the residual variance, the proportion of explained variance η\eta and the signal strength in a high-dimensional linear regression model with Gaussian random design. Our aim is to understand the impact of not knowing the sparsity of the regression parameter and not knowing the distribution of the design on minimax estimation rates of η\eta. Depending on the sparsity kk of the regression parameter, optimal estimators of η\eta either rely on estimating the regression parameter or are based on U-type statistics, and have minimax rates depending on kk. In the important situation where kk is unknown, we build an adaptive procedure whose convergence rate simultaneously achieves the minimax risk over all kk up to a logarithmic loss which we prove to be non avoidable. Finally, the knowledge of the design distribution is shown to play a critical role. When the distribution of the design is unknown, consistent estimation of explained variance is indeed possible in much narrower regimes than for known design distribution

    Non parametric finite translation mixtures with dependent regime

    Full text link
    In this paper we consider non parametric finite translation mixtures. We prove that all the parameters of the model are identifiable as soon as the matrix that defines the joint distribution of two consecutive latent variables is non singular and the translation parameters are distinct. Under this assumption, we provide a consistent estimator of the number of populations, of the translation parameters and of the distribution of two consecutive latent variables, which we prove to be asymptotically normally distributed under mild dependency assumptions. We propose a non parametric estimator of the unknown translated density. In case the latent variables form a Markov chain (Hidden Markov models), we prove an oracle inequality leading to the fact that this estimator is minimax adaptive over regularity classes of densities

    About adaptive coding on countable alphabets

    Get PDF
    This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring AC code introduced by Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on the tight characterization of universal redundancy rate in terms of metric entropy % of small source classes by Opper and Haussler (1997) and on a careful analysis of the performance of the AC-coding algorithm. The latter relies on non-asymptotic bounds for maxima of samples from discrete distributions with finite and non-decreasing hazard rate

    Identifiability and consistent estimation of nonparametric translation hidden Markov models with general state space

    Get PDF
    This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments

    Efficient semiparametric estimation and model selection for multidimensional mixtures

    Full text link
    In this paper, we consider nonparametric multidimensional finite mixture models and we are interested in the semiparametric estimation of the population weights. Here, the i.i.d. observations are assumed to have at least three components which are independent given the population. We approximate the semiparametric model by projecting the conditional distributions on step functions associated to some partition. Our first main result is that if we refine the partition slowly enough, the associated sequence of maximum likelihood estimators of the weights is asymptotically efficient, and the posterior distribution of the weights, when using a Bayesian procedure, satisfies a semiparametric Bernstein von Mises theorem. We then propose a cross-validation like procedure to select the partition in a finite horizon. Our second main result is that the proposed procedure satisfies an oracle inequality. Numerical experiments on simulated data illustrate our theoretical results
    • …
    corecore